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The Karlsruhe Dynamo experiment is aimed at showing that an array of columnar
helical vortices in liquid sodium, confined in a cylindrical container, can generate a
magnetic field by self-excitation. In three test series it has been demonstrated that mag-
netic self-excitation occurs and a permanent magnetic saturation field develops which
oscillates about a well-defined mean value for fixed flow rates. Dynamo action is ob-
served as an imperfect bifurcation from a seed magnetic field of the environment. Two
quasi-dipolar magnetic fields of opposite direction have been realized. A transition
between these two states can be enforced through imposition of a sufficiently strong
external magnetic perturbation on the existent dynamo field. These perturbations were
induced with the aid of two Helmholtz coils. A time series analysis of the magnetic
field fluctuations shows several characteristic dynamic features, which are in agreement
with theoretical predictions from turbulence models available in the literature.

1. Introduction
Systems capable of converting mechanical into electromagnetic energy are called

dynamos. Technical dynamos are commonly utilized for electricity generation. In
principle these power generators are constructed in a complex way using multiply
connected copper wiring arranged in several coils combined with ferromagnetic
material, which rotate relatively to each other in such a way that self-excitation
of an electro-dynamic state occurs. A detailed description of a technical dynamo
can be found in any textbook of fundamental and applied physics. These technical
dynamos are different from homogeneous dynamos, which in principle originate
from vortical flows in electrically conducting homogeneous fluids contained in singly
connected domains where the fluid flow may be driven by external or internal forces.
The existence of such homogeneous hydromagnetic dynamos is not obvious, as any
induced current in the homogeneous conductor may short-circuit and vanish from
the conductor without amplifying a seed magnetic field, which together with the fluid
motion generates the current.

The investigation of homogeneous dynamos has received much attention in geo-
and astrophysics during the last fifty years, as it is generally accepted today that
the origin of planetary, solar and even galactic magnetic fields is dynamo action
in the interior of these celestial bodies or ‘clouds’. The historical development and
the present state of the art can be obtained from numerous survey articles on this
subject (see e.g. Busse 1978, 2000; Rittinghouse Inglis 1981; Rädler 1995; Moss 1997;
Fearn 1998; Glatzmaier & Roberts 2000; Gailitis et al. 2002). The vast majority of the
research has been focused on the theory of homogeneous dynamos. Only recently have
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a number of experimental research programs been initiated to demonstrate homo-
geneous dynamo action in the laboratory. So far only in two laboratories, at the
Physics Institute in Riga and at the Forschungszentrum Karlsruhe, have dynamo
actions been successfully realized in an experiment (see Gailitis et al. 2001; Stieglitz &
Müller 2001).

In this article we report the results of hydrodynamic dynamo experiments performed
at the Forschungszentrum Karlsruhe. The article is organized as follows. Section 2
outlines the theoretical background of the dynamo experiment. Section 3 describes
the experimental set-up and the measuring techniques. The experimental results are
presented in § 4. Finally, in § 5 experimental and theoretical results are compared and
discussed. In § 6 some conclusions and perspectives are given.

2. The theoretical background
2.1. General aspects

It is generally accepted today that planetary dynamos are driven by buoyant convec-
tion in the liquid and electrically conducting core of celestial bodies. A general des-
cription of the dynamo process requires the solution of the complete set of coupled
thermo-fluid-dynamic and electro-magnetic transport equations in finite, e.g. spherical,
domains together with appropriate boundary conditions. This is a formidable mathe-
matical problem, which only recently has been tackled with some success by several
research groups utilizing advanced methods of computational fluid dynamics (CFD).
The state of the art of the numerical approach to the convection-driven geodynamo
problem has been described recently by Jones (2000), Busse (2000), Glatzmaier &
Roberts (2000) and Glatzmaier (2002).

In the past the thermo-fluiddynamic and the magneto-hydrodynamic aspects of the
planetary dynamo problem have often been considered separately in order to reduce
the complexity of the overall problem to mathematically treatable or experimentally
accessible subtasks. Thus, the thermal and solutal convection problem in rotating
spheres and the kinetic dynamo problem of vortex flows have been treated in parallel.

From numerous theoretical and experimental investigations on buoyant convection
in rapidly rotating spheres or spherical shells a convincing picture of the coherent flow
structures in the liquid core of rotating planets has emerged (see Busse 1971, 1992,
1994; Busse & Carrigan 1974, 1976; Carrigan & Busse 1983; Zhang 1992; Sumita &
Olson 1999; Aubert et al. 2001). A characteristic feature of the internal, buoyancy-
driven flow in major planets is an assembly of large columnar vortices with axes
parallel to the planet’s axis of rotation. These vortices are of the Taylor–Proudman
type in the near-equator range and of the Bénard type in the pole regions.

The associated hydromagnetic dynamo problem starts from the assumption that
the velocity field is known or can be directly calculated from a given pressure or con-
servative force distribution. This reduced problem has recently been reformulated by
Tilgner & Busse (2002). It is governed by the following set of dimensionless equations
for the velocity υ the pressure p and the magnetic induction B:

∂tυ +(υ · ∇)υ = −∇p +
1

Re
∇2υ + (∇ × B) × B + f , (2.1)

υ · ∇ = 0, (2.2)

∂t B + ∇ × (B · ∇) =
1

Rm
∇2 B, (2.3)

υ · B = 0. (2.4)
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Here the hydrodynamic and magnetic Reynolds numbers are defined as

Re =
U0d

v
, Rm =

U0d

λ
, (2.5)

where U0 is a reference velocity, d a characteristic dimension of the velocity and
magnetic field and v and λ are the viscous and the magnetic diffusivities. The
reference velocity U0 may be defined by the volumetric flow rate V̇ in the laboratory
model and a particular flow cross-section, characterized by its hydraulic diameter.
Aside from the pressure p, a forcing function f has been introduced in order to
simulate specific velocity distributions of laboratory dynamos. It is noticed here that
the relative influence of viscous and Joule dissipation in equations (2.1) and (2.3)
is governed by the ratio of the two Reynolds numbers Rm/Re, which is commonly
termed the magnetic Prandtl number Pm= v/λ. For any numerical treatment of the
system (2.1) particular difficulties arise if Pm � 1, as e.g. in case of sodium flows.

2.2. Onset of dynamo action

If the onset of dynamo action is of primary interest, the model equations (2.1)–(2.4)
can be simplified further by considering specific velocity distributions as given. The
velocity may be introduced into equation (2.3). Together with boundary conditions
for the magnetic field at the surface of the flow domain, equations (2.3) and (2.4)
define the so-called kinematic dynamo problem. A solution of this problem can be
obtained in the form of a complex product function

B(x, t) = exp(γ t) · b(x), (2.6)

where the growth rate is determined by the associated boundary eigenvalue problem.
For R(γ ) > 0 self-excitation of the magnetic field, i.e. dynamo action, occurs; for
R(γ ) < 0 any initially given seed magnetic field decays in time. Naturally, the growth
rate depends on the magnetic Reynolds number Rm and the structure of the velocity
field.

With regard to an anticipated quasi-regular vortex flow structure in the liquid core
of a planet it is of particular interest to investigate the potential for dynamo action
caused by periodic velocity fields. Roberts (1970, 1972) did this for infinitely extended
fields. He proved mathematically that dynamos exist “for almost all steady spatially
periodic motions of a homogeneous conducting fluid at almost all values of the
conductivity”. Childress (1967) derived an existence proof for magnetic self-excitation
in a spherical liquid conductor containing a quasi-periodic velocity distribution. The
proof is constructive and is based on the presumption of scale separation between
the period length L and the radius of the sphere R. Gailitis (1967) elaborated an
analytical solution of this problem using the Mean Field Theory of Steenbeck, Krause
& Rädler (1966). He showed that in liquid sodium and for geometrical dimensions
of 1 m for the sphere and 0.1 m for the velocity period the velocity should be of
the order of |υ| ≈ 1 m s−1 to achieve self-excitation. Furthermore, he concluded from
the current distribution that a cylindrical confinement of the periodic velocity field
would be more favourable for dynamo action at low velocities, i.e. at low magnetic
Reynolds numbers. Busse (1992) derived an approximate solution for the kinematic
dynamo problem for a periodic velocity field in a cylindrical confinement. He started
from a Roberts-type velocity distribution, as sketched in figure 1(a), and placed it in
a cylinder, as shown in figure 1(b). In his analysis he assumed that the period length
L = 2a is much smaller than the cylinder radius r0 and its height D and that the
only boundary condition at the cylinder surface S is a vanishing normal component
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Figure 1. (a) Non-confined periodic vortex pattern after Roberts (1972) and in modified
form after Busse (1992); (b) Busse’s vortex arrangement confined in a cylindrical domain;
(c) Tilgner’s (1997) and the Rädler et al. (1998) vortex arrangement in a sphere.

of the mean electric current density j . The scale separation together with mean field
methods enabled him to derive a criterion for the onset of dynamo action in analytical
form.

Based on his calculations Busse (1992) suggested demonstrating the feasibility of
this two-scale homogeneous dynamo in the laboratory and designing an experiment
with liquid sodium as the test fluid according to his model conception (cf. figure 1b).
With regard to the coherent and quasi-periodic columnar vortex structures there is
some similarity between the conjectured flow pattern in the liquid core of fast rotating
planets and the suggested laboratory model.

Tilgner (1997, 2002) and Rädler et al. (1998, 2002a) improved Busse’s original model
decisively with regard to conditions in the laboratory. They embedded the cylinder
containing the vortices into a sphere bounded by an insulating environment outside
and filled with stagnant conducting fluid in the spherical sections (see figure 1c). They
solved equations (2.3) and (2.4) with appropriate boundary and matching conditions
for the current density and the magnetic field. Using different numerical approaches
(spectral methods, mean field theory) both obtained basically the same results: the
non-symmetric mode with an azimuthally order number m =1 shows the largest
amplification for all combinations of volumetric flow rates, i.e. magnetic Reynolds
numbers. The mean magnetic field has a ‘spiral staircase’ structure in the near field
and a dipolar orientation perpendicular to the cylinder axis in the far distance.

2.3. Saturated dynamo states

An interesting aspect of the hydrodynamic dynamo beyond the marginal state (which
we shall denote as the ‘critical’ state) is the mechanism which leads to a saturated mag-
netic state. The saturation effect is principally caused by the feedback of the Lorentz
forces f L = j × B on the velocity field described by equation (2.1). For liquid metals
like sodium and mercury, commonly used in the laboratory, the kinematic viscosity
ν is much smaller than the magnetic diffusivity λ (i.e. νsodium = 0.6 × 10−6 m2 s−1,
λsodium =0.1 m2 s−1). This implies that the hydrodynamic Reynolds number Re is
much larger than the magnetic Reynolds number Rm. For supercritical conditions
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Figure 2. The bifurcation diagram for the Karlsruhe Dynamo experiment calculated by
Tilgner & Busse (2002) for the dimensionless component Bx and equal volumetric flow rates;
�, numerical results; —, fit to the low-mode approximation formula (2.7) for steady conditions.
(For more details see the cited literature.)

with Rm > 1 we have Re ∼ O(105 − 106). This means that the flow is fully turbulent.
Compared to turbulent shear stresses the viscous shear stresses and thus the viscous
term in equation (2.1) (1/Re)(∇2υ) can be neglected. Nevertheless, using Reynolds
representation for turbulent flow the form of equation (2.1) may be maintained for
fully turbulent flow conditions, if the velocity is defined as a mean value and the
Reynolds number is based on an assumed constant eddy viscosity νt (see, e.g., Hinze
1975). Tilgner & Busse (2002) studied this modified problem numerically, employing
spectral methods for the spatial resolution and finite differences for the time integra-
tion. They found that the saturated stationary dynamo states bifurcate imperfectly
from a hydrodynamic state, which is effected with an environmental seed magnetic
field.

Figure 2 shows a typical bifurcation graph obtained by Tilgner & Busse (2002) for a
parameter set compatible with the Karlsruhe Dynamo experiment. The graph shows
the continuous and the isolated branches of supercritical dynamo states characterized
by opposite field directions (for more details on bifurcation theory see Golubitzky &
Schaeffer 1985).

Tilgner & Busse (2002) have also derived a model equation in a low-order amplitude
approximation for B. Their results are based on the general form of equations (2.1)–
(2.4) and suggest that the magnetic field saturates with increasing field intensity. They
obtain an evolution equation for B in the form

dB
dt

=

[(
Rm

Rmc

− 1

)
− β

Rmc

|B|2
]

B + B0, (2.7)

where B0 accounts for the driving effect of an external seed field and Rmc is the value
for the marginal state in case of a vanishing seed field. The stationary supercritical
states are recovered for dB/dt = 0 as the solution of a cubic algebraic equation
for B.

Equation (2.7) contains three independent coefficients, Rmcrit, B0 and β , which may
be adjusted to either numerical or experimental data. Rmcrit may be taken from
calculations for the ideal kinematic state without a seed field. B0 and β can be deter-
mined by fitting the third-order equation to numerically or experimentally obtained
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solutions on the continuous branch. Then, the model equation predicts the dis-
continuous branch in the same approximation and the quality of the approximation
may be tested by comparison with corresponding numerical and experimental results.

Also, Rädler et al. (2002b) have studied the nonlinear behaviour of dynamo action
in the Karlsruhe test facility by employing generalized mean field methods. Some of
their results will be compared with our experimental findings in § 5.

2.4. Some comments on MHD turbulence

In a sodium experiment dynamo action may occur for magnetic Reynolds numbers
Rm = udh/λ> 1 and at high hydrodynamic Reynolds numbers Re= udh/ν of O(106)
due to the greatly different values of the magnetic and viscous diffusivities (dh is
the relevant hydraulic diameter of a helical vortex, see figure 1, and the velocity
u is the volumetric flux in it). Thus, the channel flow is fully turbulent and all
magnetohydrodynamic variables in equations (2.1)–(2.4) are affected by turbulent
fluctuations and may be decomposed into a mean and a fluctuating part as

υ = υ + υ ′, p = p + p′, B = B + B′. (2.8)

The quality of these turbulent fluctuations can be judged by utilizing the charac-
teristic functions of random data analysis. In processing our measured time signals
we evaluated the mean values, the probability density functions (PDF) and the higher
moments, the variance, skewness and flatness (σ 2, S, K). The temporal and spatial
coherence of the signals can be obtained from their auto- and cross-correlation
functions (ACF, CCF) as well as from their Fourier spectra, i.e. the power spectral
density (PSD).

For a more subtle analysis of turbulent processes the exchange and transport of
energy between structures of different size for velocity and magnetic field must be
considered, where the structures can be imagined as eddies of either the velocity or
current field. The scale of these structures is bounded by viscous and Joule dissipation
on the lower side, i.e. by the Kolmogorov (1941) time and length scales (see Hinze
1975). For the viscous and Joule dissipation they are

τKv =

(
v

ε

)1/2

, LKv =

(
v3

ε

)1/4

; τKλ =

(
λ

ε

)1/2

, LKλ =

(
λ3

ε

)1/4

. (2.9)

Here ε is the specific energy flux, which is dissipated. It may be defined for channel
flow by the pressure loss 	p, the volumetric flow rate V̇ , and the fluid mass M as

ε = V̇ 	p/M. (2.10)

It is obvious that in turbulent sodium flow LKv � LKλ. Therefore, the Joule dissipa-
tion time and length scales are particularly relevant for turbulent sodium flow. The
ratio of each of these quantities is directly related to the magnetic Prandtl number
defined as Pm= v/λ.

The dimensions of the test facility determine the upper limit of scales L, in our
case typically the velocity u is determined by the diameter dh of a vortex generator,
and the magnetic field and the associated currents are determined by the diameter of
the cylindrical test module 2r0 and its height D.

The energy transfer between the different scales is commonly discussed in turbulence
theory by a spectral decomposition of the state variables and a spectral transformation
of the governing equations, in our case equations (2.1)–(2.4). The variables in the
form of power spectral density functions (PSD) depend on wavenumbers kn and
frequencies wn which are related to the corresponding spectral length and time scales
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of the turbulent structures as

kn =
2π

Ln

, ωn =
2π

τn

. (2.11)

For turbulent channel flow, where u∗/u � 1 holds (u∗ denotes the standard deviation),
Taylor’s hypothesis (see Hinze 1975) applies and kn can be expressed by ωn and the
mean velocity as kn = ωn/u or kn = 2πfn/u.

Here we recall briefly some relevant relationships from the literature for turbulent
magnetohydrodynamic (MHD) flows, which we shall use later on. The spectral distri-
bution of the turbulent energies is commonly obtained by a Fourier transformation
of the auto-correlation function of the velocity and magnetic field fluctuations
respectively. The turbulent kinetic and magnetic energies EV and EM are thus replaced
by their spectral distribution functions EV

k and EM
k .†

In three-dimensional turbulent flow, not influenced, or at most very weakly
influenced by magnetic fields, the kinetic energy of large-scale motion is transferred to
smaller-scale motions in a cascade of successive flow instabilities induced by vortex
stretching and shearing processes. This occurs without dissipative losses in a wave-
number range between the low wavenumber kL of the large-scale inertial flow and the
high wavenumber kKv for viscous dissipative small-scale flow. Based on the assumption
that the flux of kinetic energy is conserved, Kolmogorov (1941) derived a relation
between the spectral energy density EV

k , the injected energy rate ε and the wavenumber
k in the form

EV
k = cKε2/3k−5/3 for kL < k < kKv,

with cK a dimensionless constant and kKv the wavenumber based on the Kolmogorov
viscous dissipative length scale (cf. Hinze 1975). This is known as the inertial range of
kinetic energy transfer by a nonlinear interaction of vortices and for negligible viscous
dissipation. For weak intensities a large-scale magnetic field behaves like a passive
vector in a turbulent velocity field. It can be shown by a spectral transformation of
equation (2.3) that the fluctuations of the magnetic field obey the same spectral law
as the velocity, i.e.

EV
k ∼ EM

k ∼ k−5/3. (2.12)

This spectral behaviour has been observed in experiments in a fairly wide range of
magnetic field intensities and for different turbulent flow conditions such as turbulent
flow behind grids (Kolesnikov & Tsinober 1974; Alemany et al. 1979) and in turbulent
swirling flows in spherical containers (Peffley, Cawthorne & Lathrop 2000). It has
also been corroborated by direct numerical model calculations of Biscamp & Mueller
(2000) and Brandenburg (2001).

The transfer process has to be modified in conducting fluids in the presence of
a magnetic field if Lorentz forces, originating from the large-scale magnetic field
and the small-scale electric currents initiated by the velocity fluctuations, significantly
influence the small-scale motions. This may be an external magnetic field or a self-
exited mean magnetic field B . The energy transfer occurs through locally interacting
Alfvén waves in an inertial range of wavenumbers, which is limited from above by
the Joule dissipative wavenumber kKλ = 2π(ε/λ3)1/4. Iroshnikov (1963) and Kraichnan
(1965) derived an interdependence between the spectral energy EV

k , the dissipation
ε and the Alfvén velocity Va = B/

√
µρ where µ is the magnetic permeability. They

† The formalism of spectral decomposition holds strictly only for homogeneous turbulent flows
in infinite domains (see textbooks on turbulent flows, e.g. Hinze 1975).
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used dimensional arguments based on the assumption that the energy flux achieves
equilibrium and an equipartition of kinetic and magnetic energy exists in the range
considered. They arrive at the following power relationship for the kinetic spectral
energy:

EV
k (k) = cK (εVa)

1/2k−3/2 for kL < k < kKλ. (2.13)

This relationship holds as long as the velocity and magnetic field fluctuations are
spatially uncorrelated, which is true for mean magnetic fields of moderate intensities
and for an interaction of Alfvénic waves with the same size wavenumbers. However,
if the velocity and magnetic field become correlated at increasing magnetic field
intensities, the energy exchange by Alfvén wave interaction may occur in a wider
range of wave numbers. Equipartition between kinetic and magnetic energy can no
longer be anticipated. Grappin, Pouquet & Leorat (1983) have treated this case, which
is outlined in some detail in Biskamps’s (1993) textbook.† Using Elsasser variables
Z± = υ ± B/(ρµ)1/2 they consider modified spectral quantities based on these variables
and relate them to the energy spectral densities EV

k (k) and EM
k (k). By definition the

following relations hold between the total spectral energy Ek and the Elsasser spectral
energy quantities E

±
k :

Ek = EV
k + EM

k = E+
k + E−

k .

Making assumptions of strong separation of scales in the inertial range, but requir-
ing equal dissipation wavenumbers kKλ for both Elsasser spectral energy densities,
Grappin et al. (1983) derived the power law

E
±
K = C1λVa

(
k

kKλ

)−m±

(2.14)

for the inertial range with m+ + m− = 3.
This correlation merges into the Iroshnikov–Kraichnan (1963, 1965) relationship

under the assumption of equipartition between kinetic and magnetic spectral energies.
Otherwise, in the case of a strong correlation between the velocity and magnetic field
and for non-equipartition of energies one of the power coefficients m+ or m− vanishes
while the other approaches the value 3. That is E

±
K ∼ k−3. It can be shown (cf. Biskamp

1993) that in general in the inertial range EM
k − EV

k > 0 holds, and thus one obtains
for the power spectral density

EM
k ∼ k−3

(for more details see Biskamp 1993 and Grappin et al. 1983). So far this kind of
inertial spectral behaviour has not been validated by experimental observations.

If large-scale magnetic fields have an intensity such that Lorentz forces become
significant for the momentum transfer, even local homogeneity of the velocity field
cannot be sustained. Velocity fluctuations in the direction of the magnetic field and
perpendicular to it are dampened differently by Joule dissipation and there is a quasi-
equilibrium transfer of energy between the fluctuations of different spatial orientation.
The effect has been analysed in detail by Alemany et al. (1979). The effect should be

† It should be noticed here that Grappin et al. (1983) restricted their numerical investigations to
the case of equal momentum and magnetic diffusivities: v = λ, i.e. for a magnetic Prandtl number
Pm = v/λ= 1. In our investigations with liquid sodium the magnetic Prandtl number is of the order
10−5. Thus, the magnetic diffusivity dominates. Nevertheless, the general relationships of Grappin
et al. (1983) for the inertial spectral domain, as outlined by Biskamp (1993), hold also in our case,
if λ is taken as the governing diffusivity and the associated Kolmogorov dissipation wavenumber
kKλ is used as the relevant reciprocal length scale.
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observed if the interaction parameter N based on the local quantities of the velocity
field, the vortex dimension � and the magnetic field intensity B0, is of the order 1, i.e.
N = (σB2

0�)/(ρu) ≈ O(1).
With regard to our model velocity field in figure 1 and dynamo action, B0 would

correspond to the self-excited magnetic field intensity |B| and u to the mean helical
velocity u defined as the helical volumetric flux; � would correspond to the half-period
α of the velocity field. An equivalent interpretation of N ≈ 1 is that the transport
time of energy or the vortex turnover time τt ∼ �/u∗ is of the same order as the Joule
dissipation time scale τj ∼ ρ/(σB2

0 ).
With � ∼ 1/k and a spectral representation of the velocity, u ∼ (EV

k k)1/2, this results
in the power relationship:

EV
K ∼ τ−2

j k−3. (2.15)

This spectral relationship has been confirmed in an inertial–dissipative range by
extensive experimental investigations of Alemany et al. (1979) and recently by
Messadek & Moreau (2002).

The spectral MHD energy under the influence of Joule dissipation, but still in
the inertial range of fluid dynamics, has been analysed by Moffatt (1961). Assuming
that 1 � Rm � Re holds, he finds that the magnetic spectral energy distribution is
correlated to the kinetic spectral energy as

EM
k ≈ λ−2k−2EV

K. (2.16)

Furthermore, using for the kinetic spectral energy EV
K the Kolmogorov relationship

(2.12) for a weak interaction between the magnetic and the velocity field, he derives
the following expression for the magnetic spectral energy in the Joule dissipative
regime of wavenumbers kKλ <k <kKv:

EM
k = 9

4
RmB

2

oε
2/3λ−2k−11/3 for kKλ < k < kKv. (2.17)

Here B
2

o is a measure of the magnetic energy of the large-scale magnetic field, e.g.
an external magnetic field or, with a similar effect, a self-exited dynamo field. If one
proceeds with the same reasoning, but applies the relationship (2.15) of Alemany et al.
(1979) for the velocity power spectrum, then one obtains the relation

EM
k � k−5 (2.18)

in the dissipative range. In this case, however, a strong correlation between the
velocity field and the induced large-scale magnetic field should apply. The decay
of the magnetic spectral density in the Joule dissipative range k > kKλ according to
Moffatt’s relationship (2.17) has been corroborated by measurements of Odier, Pinton
& Fauve (1998) and Marie et al. (2001). Peffley et al. (2000) report evidence for an
even stronger decay such as EM

K ∼ k−4,5.
So far we have considered the spectral energy transport from large-scale vortices and

eddy currents downward to smaller scales. It has been found, however, from model
calculations that in three-dimensional turbulent vortex flow small-scale magnetic
fluctuations associated with small-scale eddy currents may build up large-scale
magnetic fields by self-organization. This effect is known as the reverse cascade
of spectral energy transfer and is closely related to the conservation of magnetic
helicity HM . This process has been described theoretically for helical turbulence in a
series of papers by Frisch et al. (1975), Pouquet, Frisch & Leorat (1976) and Leorat,
Pouquet & Frisch (1981). Here we outline some results of Pouquet et al., which we
consider to be relevant for our observations.
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The magnetic helicity is a conserved quantity, if dissipative effects are neglected
(cf. Biskamp 1993). Frisch et al. (1975) pointed out that in the spectral domain of
helical, isotropic MHD turbulence a self-organization of magnetic helicity towards
larger scales may occur, if this quantity is permanently injected into the system at
a fixed rate and a characteristic wavenumber kin. Pouquet et al. (1976) corroborated
this reverse cascade by extensive numerical calculations using closure approximations
for turbulent helical flow in the spectral domain. They chose a magnetic Prandtl
number Pm= 1. They found that together with the reverse helicity cascade a reverse
energy cascade exists. In the spectral domain their results indicate a quasi-stationary
behaviour in form of power relationships

HM
k (k) ∼ k−2, EM

k (k) ∼ k−1, (2.19)

for the magnetic spectral helicity HM
k and the magnetic spectral energy EM

k . They
substantiated these findings by dimensional arguments of the Kolmogorov type for
the reverse inertial transport mechanisms. They argue that there should exist a unique
functional dependence between the relevant quantities EM

k and HM
k on the one hand

and the effective helicity injection rate εM
eff and the wavenumber k on the other hand.

The effective helicity injection rate may differ from the total injection rate, as part
of it may cascade downward into helicities of smaller scale and finally dissipate. A
similar statement holds for the injected energy. The dimensional considerations result
in the relationships

EM
k (k) = C1

(
εM

eff

)2/3
k−1, HM

k (k) = C2

(
εM

eff

)2/3
k−2 for k < kin, (2.20)

where C1 and C2 are dimensionless constants. Furthermore, it has been shown that
under equilibrium conditions (cf. Pouquet et al. 1976) the spectral component of the
magnetic helicity is related to the kinematic helicity as HM

k � k−2HV
k . Equivalently

εM
k � k−2εV

k (2.21)

holds. Here HV
k is the spectral representation of the kinetic helicity (cf. Biskamp 1993).

From an experimental point of view the injected kinetic helicity and its specific scale
k−1

in is the control parameter for dynamo action rather than the magnetic helicity.
A result similar to the outcome from closure model calculations of Pouquet et al.

(1976) has been reported by Brandenburg (2001). He applies direct numerical spectral
methods and finds spectral energy propagation into the range of smaller wavelength
k, if helicity is injected into the system at an intermediate wavenumber. However,
instead of a continuous power distribution with a behaviour proportional to ∼ k−1 he
found only an envelope for the helicity waves which follows approximately a ∼ k−1

power law.†
Following Pouquet et al. (1976) again, we cite an estimation for the time T it

takes to build up a large-scale magnetic field of dimension L ∼ k−1
L from a small-scale

turbulent seed field characterized by an injection length scale �in ∼ k−1
in . It is reasonable

to define this time to be proportional to the ratio

T ∼
(

HM

εM
eff

)
. (2.22)

Pouquet et al. obtained (cf. the original literature)

T ∼
(
εM

eff

)−1/3
L.

† The frequency and wavelength spectra are equivalent, if Taylor’s Hypothesis holds.
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Using relationship (2.21) results in

T ∼ C2

(
εV

eff �2
in

)−1/3
L. (2.23)

We shall refer to these relationships outlined for turbulent MHD flow in our
discussions of the experimental results in § § 4.1 and 5.

3. The dynamo test facility and instrumentation
The Karlsruhe dynamo test facility has been described in detail by Stieglitz &

Müller (1996). Here we restrict ourselves to a brief outline of the main features.
The test rig consists essentially of a cylindrical dynamo module which contains 52
vortex generators connected to three different loops each of which is equipped with
an MHD feed pump of about 210 kW power and a heat exchanger to ensure constant
temperature in the liquid sodium during the experimental runs. Using water–steam
heat exchangers provides a constant operation temperature within a threshold of
±1 ◦K during runs of several hours.

The module and the loop are fabricated entirely of stainless steel. The shroud
of the vortex generators as well as the inner tube consist of 1 mm thick stainless
steel sheets or tubing material, whereas the guide vanes generating the vortex flow
are fabricated from 0.5 mm thick sheet metal. Taking into account the different
temperature-dependent specific electric conductivities of stainless steel and sodium
in both the axial and radial directions separately the effective magnetic diffusivity
is increased by 8.5–9% compared to that of pure sodium. Thus, operating the
dynamo module in a temperature range between 120 ◦C<T < 125 ◦C yields a magnetic
diffusivity of λ=0.1 m2 s−1 with an accuracy of ±0.002 m2 s−1. In order to ensure
optimal electrical contact between the liquid sodium and the stainless steel channel
walls, the wetting of the wall material was achieved by operating the sodium loops
at elevated temperatures of 350 ◦C–400 ◦C for more than 24 hours.

A technical sketch of the dynamo module, the individual vortex generator and the
operational set up is given in figure 3. A reference coordinate system is also indicated.
The ideal helical flow of the vortex pattern in figure 1(a) is approximated by a quasi-
vortex-free flow in the central duct and a spiral flow in the annular gap enforced by
a helical baffle plate. The diameter of a vortex generator is a = 0.21 m; the inner duct
diameter is ai =0.1 m. The height of a complete helical winding is h = 0.19 m. The
radius of the cylindrical container is r0 = 0.93 m, its height is D = 0.98 m. The vortex
generators are connected at their ends by bends for the central flow and by fitting
channels for the helical flow. The helical flow in the vortex generators is provided by
two separate loops each supplying 26 helical flow channels arranged in a right and
left semi-section of the cylinder.

The central flow is controlled by a third sodium loop. The maximum capacity of the
MHD pumps is V̇ = 150 m3 h−1 each. The pressure drop across the module in each of
the three independent channel systems is measured by sensitive capacitance pressure
gauges from KULITE Int. with an accuracy of δp = ±5 × 102 Pa. The frequency
resolution of the pressure gauges is about 400 Hz. The sodium volumetric flow rate
in each of the three loops is determined by electromagnetic (EM) flow meters which
are calibrated via a gyrostatic absolute mass flow meter before each measurement
campaign to give errors less than (δV̇ )/V̇ < 0.3%.

The module is located in a separate room and sheltered from electromagnetic
stray fields from the MHD pumps and EM flow meters by a floor of soft iron
plates. Thus, the intensity of the stray field in the test room is less than 0.5 G, i.e.
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Figure 3. Semi-technical sketch of the Karlsruhe dynamo test module: (a) internal structure
and velocity distribution, (b) vortex generator, (c) technical design with a reference coordinate
system.

of the order of the Earth’s magnetic field. The magnetic field in the test module is
measured by Hall sensors from Bell Inc. Because of the strict temperature control
a resolution of δB/B � 0.03% for the highest field intensities could be ensured at
a frequency resolution of 300 Hz. The data recording of each signal acquisition
(pressures, temperatures, flow rates, Hall signals) was performed at a frequency of
512 Hz using fast 16-bit acquisition cards of the Keithley Company.

During the dynamo tests the magnetic field was recorded at two fixed locations
near the ‘equator’ of the cylinder, separated by 120◦, and at variable positions
along the cylinder axis between the centre and the ‘north pole’ using a traversable
probe. The Hall probe can be moved in the z-direction in a stainless steel tube of
0.05 m in diameter, which penetrates the module along its axis. Using the induction
equation (2.3) and the properties for stainless steel a conservative estimate gives that
the effective probe diameter affects its frequency wide-band ratio only in a frequency
range f > 300 Hz. Two Hall sensors (H3, H4) are fixed to the traversable probe. One
(H3) is capable of measuring all three components (Bx, By, Bz) of the B-field, the
other (H4) located a distance of 135 mm from H3 measures By only. The Hall sensors
near the equator (H5, H6) are arranged to measure the radial component of the field.
H5 also measures the axial component Bz. The sensor locations are schematically
shown in figure 4.

Before each measurement campaign the pressure transducers, the EM flow meters
and the Hall sensors were calibrated to ensure high measuring accuracy and to avoid
systematic errors. In particular the flow rate was calibrated before each coherent
set of measurements. Also the environmental seed magnetic field was repeatedly
recorded with the traversable Hall sensors for vanishing volumetric flow rates and at
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Figure 4. Sketch of the locations of the Hall sensors in the test module; location H3: two
Hall sensors to measure three field components Bx, By, Bz; location H4: one Hall sensor to
measure By; location H5: one Hall sensor to measure two components Bz and Br , i.e. the
radial component; location H6: one Hall sensor to measure the radial component Br .
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Figure 5. The distribution of the seed magnetic field along the module axis in the range
0 � z � 350 mm recorded at (a) the beginning and (b) the end of a measuring campaign.
There is a noticeable change in the local characteristic of the seed field. Volumetric flow rates
V̇ C = V̇ 1,2 = 0.

intermediate subcritical flow rates. Two typical recordings for the mean magnetic field
intensities on the module axis in the range 0 � z � 350 mm are shown in figure 5(a, b)
for zero flow rates. The graphs show that the seed magnetic field is subject to
variations during a measuring period. However, the observed variations were always
smaller than the local intensity of the Earth’s magnetic field.

Furthermore, arrays of mobile compass needles were attached to two vertical wood
boards, one placed sideways and one in front of the cylindrical dynamo vessel, in
order to obtain a qualitative impression of the structure of the generated magnetic
field. From the orientation of the compass needles during dynamo action the global
structure of the magnetic field could be identified. In support of this qualitative
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instrumentation the normal component of the magnetic field with regard to the
vertical boards was measured using a carry-on Hall probe in some cases.

The test module was generally operated in two modes. In order to study the onset
of self-excitation and the saturation of the magnetic field at supercritical conditions,
the volumetric flow rates in the three loops were scanned up (or down) for flow
rate variations 0.1 � δV � 5 m3 h−1 within time intervals of typically between 1 and
10 min. The time intervals between the variations ensured that a new hydromagnetic
equilibrium, i.e. a saturated dynamo state, was achieved. One flow rate was varied,
while the other helical or central flow rates were kept constant, or all flow rates were
simultaneously varied at the same rate.

The other operation mode of the test facility is for long-term runs at constant
volumetric flow rates. Time series of signals of the magnetic field components, pressure
differences and volumetric flow rates were recorded during time intervals of 1200 up
to 4000 s.

4. Results
4.1. Self-excitation of the magnetic field

In our experiments we used time series signals recorded by Hall probes, EM flow
meters and pressure transducers as indicators of dynamo action. Typical time signal
recordings for the volumetric flow rates in the three loops, the three components
of the magnetic field at the centre of the module (position H3 in figure 4) and the
pressure drop in the three channel systems of the module are shown in figure 6. In
this experiment the two helical flow rates VH1 and VH2 were simultaneously raised
stepwise from subcritical to supercritical conditions during a total period of 1600 s,
while the central flow rate was kept constant at V̇ C = 85 or 86.

The signals for the first 1000 s are displayed. The magnetic field components follow
the stepwise variation of the helical flow rates and achieve a saturation level during
each time interval without flow rate variation. There is in particular no delay time
between the rise time of the volumetric flow rate and that of the magnetic field
components. An evaluation of the predicted self-organization time for the large-scale
magnetic field according to relationship (2.23) of Pouquet et al. (1976) gives time scales
of less than 0.6 s which are much smaller than any rise time realized for the pumping
power, which is of the order of 50 s (see figure 6b). They are also considerably smaller
than the overall magnetic diffusion time for the module, which is about 10 s. After a
test run of 900 s the record shows a saturated B-field of |B| ∼ 300 G in the centre of
the module, which has a strong x- and y-components and a small z-component.

In figure 7 the stationary states are plotted versus the helical flow rates. This graph
shows a weak increase for lower, and a strong increase for higher, flow rates with
a tendency to reduced growth rates at even higher flow rates. A point of inflection
can be seen in the interpolation curve of the measured data points. The onset of
dynamo action cannot be sharply allocated to a particular volumetric flow rate V̇ H .
The observation suggests a smooth rather than a sharp bifurcation, i.e. an imperfect
bifurcation of the steady dynamo states from the hydrodynamic basic state. The
onset of dynamo action may be defined by plotting the local magnetic energy, i.e. B2

measured at position H3, versus flow rates. This is shown in figure 8(a). Self-excitation
can be identified by the sudden linear increase of the magnetic energy. We use the
intersection of the linear interpolation curve with the axis of flow rates as the marker
for the beginning of self-excitation.
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Figure 6. Time signal recordings for (a) volumetric flow rates; (b) pressure losses in the
helical and central channels; (c–e) magnetic field components for an experimental operation
with stepwise changing flow rates.

In a similar way as in the case of hydrodynamic bifurcation problems of shear
flows, the pipie pressure loss across the module indicates the onset of self-excitation
by a significant pressure increase due to the additional magnetohydrodynamic losses.
In figure 8(b) the pressure differences between the inlet and outlet of the three
loops at the test module are shown for the corresponding steady hydrodynamic and
magnetohydrodynamic states.

The hydrodynamic and magnetohydrodynamic flow states can be distinguished
by a change in the increment of the data sequence. The intersection of the linear
interpolation curves for the hydrodynamic and the magnetohydrodynamic losses
then defines experimentally to a good approximation the bifurcation point for this
particular test run. Here, we emphasize that the pressure loss measurements in the
three independent loops result in the same transition value within a margin of
|δVH | � 1 m3 h−1. Corresponding test runs were performed and evaluated for other
fixed central and variable helical flow rates or in some cases vice versa.
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Figure 7. Magnetic field components Bx (�) and By (�) for saturated steady dynamo states
measured in the centre at H3 for a constant central flow rate V̇ C = 85 m3 h−1 and variable
helical flow rates 110< V̇ H1,2 < 130m3 h−1 – piecewise fit to the experimental data.

 

Figure 8. (a) Local magnetic energy in the centre at H3 and (b) pressure losses in the helical
and central piping systems of the test module under steady-state operation conditions for
V̇ C = 85 m3 h−1, 110 < V̇ H1,2 < 130m3 h−1 —, – – –, fit to the data points.

The evaluation of the magnetic energy and the pressure losses results in a phase
diagram of dynamo action for our test module. It is presented in a (V̇ C/V̇ H )- as
well as in a (RmC, RmH )-plane. Hydrodynamic and dynamo states are separated by
an interpolation line of hyperbolic character, which, within the error bounds of the
instrumentation and the evaluation methods, represents both data sets within the error
bounds of the instrumentation and the evaluation methods. This is seen in figure 9.

4.2. The structure of the magnetic field

The overall structure of the dynamo fields at clearly supercritical conditions was
examined by the orientation of an array of compass needles arranged on plane
boards, which were placed vertically sideways and in front of the cylindrical test
vessel. The needles can turn in the plane of the board and thus react to the magnetic
field components in this plane. Moreover, using a carry-on Gauss meter the normal
component of the field on the sideways-located board was measured. Figure 10
shows (a) the isoline graph of the normal component on the side-board and (b) the
array of compass needles on the front board. This particular test was performed
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Figure 10. The global structure of the dynamo magnetic field: (a) isolines of By , i.e. the
normal components of the magnetic field measured in the plane of the side-ways placed
vertical board at position y = 1.67m; the numbers in the isoline graph indicate the field
intensity measured in Gauss; (b) array of compass needles arranged on a vertical board in
front of the module and perpendicular to its axis at a position z = 1.04 m from the centre.
Experimental conditions: V̇ C = 115m3 h−1, V̇ H1,2 = 115m3 h−1 and λ=0.1 m3 s−1.
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Figure 11. (a, c) Distribution of the intensities of the magnetic field components on the
module axis in the range 0 � z � 350mm for equal volumetric flow rates: (a) V̇ H = V̇ C =
115m3 h−1; (c) V̇ H = V̇ C = 110m3 h−1. (b, d) Variation of the angle of inclination of the mag-
netic field relative to the module’s position for (b) V̇ H = V̇ C = 115m3 h−1; (d) V̇ H = V̇ C =
110m3 h−1.

for the volumetric flow rates V̇ C = V̇ H1 = V̇ H2 = 115 m3 h−1. Figure 10(a) indicates a
concentration of magnetic field lines near a centreline perpendicular to the cylinder
axis of the module and suggests a dipole structure of the field. This impression is
supported by the photo figure 10(b) showing the orientation of compass needles at
the front side of the module. Two centres of random needle orientation are located
at a certain distance from the two vertical rims of the plate and slightly below its
horizontal centreline.

Between these centres and towards the plate periphery the needles show an
orientation along lines of force, which are compatible with a quasi-dipole field whose
axis passes through the module perpendicular to the cylinder axis. The level of the
centre of largest field intensity of the isoline graph is compatible with the level of the
areas of disorder in the needle array at the front board (see figure 10b).

Further insight into the local structure of the magnetic field is gained from the
distribution of the field components along the cylinder axis obtained by traversing
the Hall probe at location H3 in the range 0 � z � 350 mm. This distribution is
shown in figure 11(a) for the volumetric flow rate condition. There is only a small
Bz-component compared to the Bx and By components. The maximum of the field
intensity is not reached in the centre of the module. The maximum is, rather, slightly
shifted toward a position z = 100 mm. The angle of inclination β of the B-field vector
to the x-coordinate axis changes in the range 144◦ � β � 188◦ along the z-axis in the
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Figure 12. Distribution of the magnetic field components along the axis of the module in the
range 0 � z � 350mm for symmetric and non-symmetric flow distributions. (a) V̇ H1 = V̇ H2 =
100m3 h−1, V̇ C =128m3 h−1; (b) V̇ H1=85 m3 h−1, V̇ H2=115m3 h−1, V̇ C =128m3 h−1; (c) V̇ H1 =
115m3 h−1, V̇ H2 = 85 m3 h−1, V̇ C = 128m3 h−1.

range 0 � z � 350 mm. This is shown by the B-vector graph in figure 11(b). The B-field
is twisted along the z-axis in the manner of a spiral staircase. At lower supercritical
volumetric flow rates, e.g. V̇ c = V̇ H1 = V̇ H2 = 110 m3 h−1, the general behaviour of
the B-field on the z-axis is the same except that the intensities are reduced. The
turning of the B-field vector along the z-axis is not significantly affected. This general
observation is displayed in figures 11(c) and 11(d). Here the magnetic field vector
turns about the z-axis by 43◦ from the inner to the outer measuring position. The
intensity of the B-vector is noticeably reduced. In general, in the whole range of
tested supercritical flow rates 85< V̇ H1 = V̇ H2 < 125 m3 h−1 and 85< V̇ C < 140 m3 h−1

the measured turning angle of the magnetic field vector along the positive z-axis
varied only modestly between 40◦ <β < 45◦ along the positive z-axis.

The dynamo test facility can be operated with different flow rates in the three
independent channel systems of the module. We investigated the influence of a non-
symmetric velocity distribution on the structure of the dynamo magnetic field by
feeding, e.g., one helical loop with a flow rate V̇ H1 = 85 m3 h−1 and the second helical
loop with V̇ H2 = 115 m3 h−1 and vice versa at a constant flow rate of V̇ C = 128 m3 h−1

in the central loop. Figure 12 shows the measured distribution of the field components
along the semi-axis of the module. Three situations are displayed by the graphs in
figure 12: the distribution (a) for equal helical flow rates V̇ H1 = V̇ H2 = 100 m3 h−1,
(b) for non-equal helical flow rates V̇ H1 = 85 m3 h−1, V̇ H2 = 115 m3 h−1 and (c) for
the complementary case V̇ H1 = 115 m3 h−1, V̇ H2 = 85 m3 h−1. The striking difference
compared to the flow situation with equal helical flow rates is the greatly enhanced
z-components of the magnetic field shown in figure 12(b, c). Depending on the shift
of the helical flow rates from the reference case, positive or negative field components
B̄z occurred. This indicates that the axis of the reference magnetic field B̄ is inclined
to one or the other direction of the module axis.
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Furthermore, there is an obvious tendency that the intensities of the x- and y-
components of the magnetic field for the non-symmetric flow rates are larger than
for the symmetric case, i.e. for equal helical flow rates. Moreover, the non-symmetric
cases do not achieve the same intensity values. The reason for this is not clear. It
is conjectured that this effect is caused by certain structural non-symmetries in the
module such as the particularities of the feed piping system connected to the module
and by inhomogeneities of the seed magnetic field due to the steel structures of the
laboratory building.

4.3. The effect of perturbations by external magnetic fields

We tested the effect that an external magnetic field, generated by two Helmholtz coils,
has on the dynamo magnetic field. The two coils are placed on both sides of the test
module such that they can generate a unidirectional magnetic field of quasi-dipole
character penetrating the module perpendicular to its axis. The coils were operated
at a DC-current of 50 A and produced a nearly homogeneous magnetic field of
about 20 G in the module area. For tests the power for the coils was switched on or
off suddenly. Changing the current direction changed the direction of the external
magnetic field.

An interesting question is: Can saturated dynamo states of opposite field direction
be established by a specific perturbation of an active dynamo state with the help of
an external magnetic field?

The experimental procedure for answering this question is as follows. A saturated
dynamo state is first produced starting from the environmental seed field by a
controlled scan up of flow rates to an intermediate level of dynamo action of, say, 20–
30 G intensity. Next, by switching on the external magnetic field of opposite direction
the dynamo field is destabilized and in a transient process, lasting from several seconds
up to minutes, a new saturated dynamo state of opposite field direction is reached,
together with the still existing external magnetic field. If the external field is switched
off, a mean magnetic field of the same direction persists and a new complementary
dynamo state is found. Other saturated states belonging to the same set can be
generated by a suitable scan up or down of flow rates. However, the magnetic field
undergoes a jump-transition to the initial dynamo state with opposite direction the
magnetic field, when the volumetric flow rates fall below a lower bound of flow
rates. The result of the experimental procedure outlined is displayed in figure 13. The
graph shows, for a fixed central flow rate of V̇ C = 112.5 m3 h−1 and variable helical
flow rates, the saturated mean value of y-components of the magnetic field By on
a continuous branch and the complementary isolated branch of existing stationary
dynamo states. Here the field component was measured by a Hall probe at the
centre of the module (H3, see figure 4). This experimental observation conforms well
with the theory of imperfect bifurcations from a stationary hydrodynamic state to a
stationary magnetohydrodynamic state. The lowest value of the volumetric flux for
the isolated branch may be identified as a turning point from which a branch of
unstable, i.e. experimentally not realizable states, bifurcates for higher flow rates (for
more details on bifurcation theory and hydrodynamic stability see e.g. Golubitzky &
Schaeffer 1985 and Joos & Joseph 1980). Tilgner & Busse (2002) and Rädler et al.
(2002b) calculated the stationary solutions of this branch as will be discussed in § 5
(see also figure 2).

Our experiments on supercritical dynamo states with field intensities larger than,
say, 300 G and with perturbations by strong external magnetic fields revealed an
unexpected effect. The dynamo magnetic field, enhanced by the temporary presence
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Figure 13. The stationary dynamo states at supercritical conditions represented by the
measured local By-component. The graph shows two sequences of stationary states, one
set on a continuous branch and another set on an isolated branch. The return jump from
the isolated branch to the continuous branch is indicated by the symbol �. Parameter range:
V̇ C = 112m3 h−1, 92< VH1,2 < 110m3 h−1; —, fit to experimental data.
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Figure 14. Stationary dynamo states on a continuous and an isolated branch of a bifurcation
graph; however, compared to figure 13 the branches are reversed due to a modification of the
environmental seed magnetic field by the dynamo magnetic field of the preceding experiment.
The return jump from the isolated branch to the continuous branch is indicated by the symbol
�. Parameter range: V̇ C = 112m3 h−1, 98< V̇ H1,2 < 113m3 h−1; —, fit to experimental data.

of the external field, may noticeably influence the environmental magnetic seed field,
which determines the initial conditions for the onset of dynamo action for each
sequence of stepwise rising flow rates. It happened that, after an up-scan along a
continuous branch of states and a termination of the test series at high field intensities,
a sub-sequent test series, starting again from low subcritical flow rates, resulted in
magnetic saturation fields of opposite direction on a continuous branch. A typical
example is shown in figure 14 in the form of another bifurcation graph for the
By-component. The graph shows the continuous and the isolated branches of states.
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directions of the magnetic field. The states were obtained in a monotonic up- and down-scan
with a switch over to the other branch at high magnetic field intensities. It is suggested that
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changing the remnant weak ferromagnetism in the steel structures of the laboratory building.
Parameter range: V̇ C = 115m3 h−1, 89< V̇ H1,2 < 112m3 h−1; —, fit to experimental data.

The character of the complementary isolated branch could only be ensured in a test
series if the transitions from the continuous to the isolated branches and vice versa are
triggered by an external perturbation at an intermediate intensity level of the dynamo
and the external magnetic field, say, in the range 50 � |B| � 200 G. If a transition is
enforced at high intensity levels of dynamo action (|B| > 300 G) the complementary
dynamo states of opposite direction can be scanned down in a continuous manner to
vanishing field intensities. This is demonstrated in figure 15. The explanation of this
behaviour must be associated with the impact of high-intensity magnetic fields on the
steel structures of the laboratory building. Indeed, although the seed magnetic field
level proved to be always of the order of the Earth’s magnetic field, i.e. |BS | ∼ 0.5 G,
measurements with a carry-on Gauss meter showed that the orientation of the seed
magnetic field inside the laboratory with the dynamo module was clearly perturbed
compared to the orientation of the Earth’s magnetic field measured outside the
laboratory building.

Moreover, measurements of the seed magnetic field performed by traversing the
Hall probe along the module axis show a distinct variation of the measured data
before and after dynamo tests. This can be seen in figure 5(a, b). This observation
supports our conjecture that dynamo action of high enough intensity may modify the
seed field and thus result in different saturated dynamo states.

4.4. Temporal features of saturated dynamo states

The saturated dynamo states are steady in the time average, but fluctuate about
a mean value of the magnetic field. For characterizing these turbulent fluctuations
long-term recordings of the magnetic field components (Bx, By, Bz) of duration from
1200 s up to 4800 s were taken using the Hall probes. A listing of all combinations
of flow rates of long-term recordings is displayed in figure 16. Here we concentrate
discussions on states of equal volumetric flow rates and for constant helical flow
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Figure 17. Typical time signals and two components of the magnetic field (By, Bz) recorded

by the Hall-probe H3 for constant volumetric flow rates V̇ C = V̇ H1,2 = 115m3 h−1 at z = 0:
(a) time interval 20 s; (b) time interval 2 s.

rates as indicated by the solid straight lines in figure 16 (for other cases see Mueller,
Stieglitz & Horanyi (2002)).

A typical recording for volumetric flow rates V̇ C = V̇ H1 = V̇ H2 = 115 m3 h−1 is shown
in figure 17(a). An extended interval is shown in figure 17(b). From the time signal
of figure 17(b) two quasi-periodic features can be seen. There are fluctuating events
with frequencies of about 3 Hz and 30 Hz.

We shall identify these frequencies in the power spectral density functions (PSD)
later. The quality of the fluctuations may be judged from the probability density
function (PDF) and the first three moments, the standard deviation (RMS), the skew-
ness S and flatness F . Figure 18 shows typical PDFs for the recordings in figure 17.

The associated higher moments of the y-component of the magnetic field By are
shown in figure 19 for a recording period of 1200 s. The moments in this figure
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Figure 18. Probability density function (PDF) of the time signals of the volumetric flow rate
and the two components of the magnetic field (By, Bz) of the Hall-probe H3 for constant
volumetric flow rates V̇ C = V̇ H1,2 = 115m3 h−1 at z = 0.
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Figure 19. The standard deviation (RMS value), skewness and flatness values of time signal
By(0, 0, 0, t) of Hall probe H3 at z = 0 for the flow rates V̇ C = V̇ H1,2 = 115m3 h−1.

were evaluated for periods of 10 s each and for signal recording rates of 512 Hz.
The characteristic features are the quasi-Gaussian PDF with a vanishing skewness, a
constant flatness of 2.5 and a constant standard deviation (RMS value) B∗

y =0.58 G.
The latter has to be compared with the mean value B̄y = 260 G which gives a small
relative fluctuation level of about 0.22%. It has been observed that this level is larger
for the z-component Bz and for all components near the onset of self-excitation.
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Figure 19 indicates that characteristic turbulence properties are practically constant
at a saturation state.

RMS values were also evaluated for other sets of equal but lower flow rates. They
are shown in figure 20 together with the associated mean values of the magnetic
field. The sub-linear behaviour of the RMS values B∗

x , B
∗
y , B

∗
z for higher flow rates

in figure 20(a) is significantly stronger than that of the mean values in figure 20(b).
In particular B∗

y and B∗
z seem to achieve saturation levels for V̇ > 112 m3 h−1. This

feature can be quantified by normalizing the RMS values by the corresponding mean
values. The normalized RMS values clearly decrease with increasing flow rates. From
this observation we conjecture, that the increasing intensity of the mean magnetic
field limits the growth rate of the turbulent fluctuations of the field.

Further insight into the character of the fluctuations is gained by considering their
power spectral density (PSD). Spectra for y- and z-components of the magnetic field
for five choices with equal volumetric flow rates V̇ = 95, 102, 106, 110, and 115 m3 h−1

are displayed in figure 21(a, b). Spectra for the y-component for the fixed flow rate
V̇ H1,2 = 100 m3 h−1 and for five variable central volumetric flow rates V̇ C = 106, 116,
120, 125 and 136 m3 h−1 are displayed in figure 21(c). The spectra were obtained from
long-time Hall probe recordings in the centre of the module (probe position H3, see
figure 4). First we consider figure 21(a, b). According to our criterion for the onset
of self-excitation, as sketched in figure 9, the flow rate V̇ = 102 m3 h−1 is subcritical,
the flow rate V̇ =106 m3 h−1 is about critical and the flow rates V̇ =110 m3 h−1 and
115 m3 h−1 are supercritical. The spectra of the two supercritical states show the
following characteristic features: there are three distinct ranges of power distribution.
There is a lower frequency range 0.1 <f < 3 Hz with nearly constant power for the
Bz-fluctuations and a dependence on the frequency proportional to ∼f −1 for the By-
fluctuations. In the range 3 <f < 20 Hz the spectral power decays nearly proportional
to ∼f −3; and beyond this range the power decays even more rapidly, in particular
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Figure 21. Power spectral density (PSD) for the components Bx, By, Bz for five different
volumetric flow rates of operation at the position z = 0 of Hall probe H3. (a) PSD for
the By-component for five equal volumetric flow rates V̇ = 95, 102, 106, 111 and 115m3 h−1;
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volumetric flow rates V̇ C = 106, 116, 120, 125 and 136m3 h−1.
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for the higher flow rate V̇ =115 m3 h−1, namely nearly proportional to ∼f −5 or even
more strongly†. The transition from the first to the second range is clearly marked
by a cut-off frequency in the spectrum of the Bz-component and a broad but distinct
power peak in the By power spectrum. The centre frequency fp of this power peak
seems to shift to lower frequencies for lower supercritical flow rates, as can be seen
for the case V̇ = 106 m3 h−1. It becomes broader and less pronounced when critical
conditions are approached and finally disappears for a subcritical state. In our specific
case the power peak frequency reduces from 2.7 Hz to about 1.2 Hz. Similar effects are
seen in figure 21(c) for volume flow rates V̇ H1 = V̇ H1 = 100 m3 h−1 and variable flow
rates 106 � V̇ C � 136 m3 h−1. For the subcritical case a broadband spectrum occurs
without particular features in the By spectra. Under supercritical conditions typical
power peaks arise whose intensities increase, while the centre frequency fp shifts to
higher values for higher central flow rates. The observations on the test sequences
displayed in figure 21 were confirmed for other supercritical tests listed in figure 16.

We also conducted some experiments at subcritical volumetric flow rates under the
influence of an external magnetic field of about 20 G generated by the Helmholtz
coils. A typical result for the power spectral density of the magnetic field
fluctuations is shown in figure 21(a) for equal flow rates V̇ H1 = V̇ H2 = V̇ C = 95 m3 h−1.
This power spectrum is comparable to the spectrum for volumetric flow rates
V̇ H1 = V̇ H2 = V̇ C = 102 m3 h−1 but without an external magnetic field.

Complementary to the previous spectra recorded at the centre position we present
in figure 22 some power spectra of the components By and Bz evaluated from signal
recordings at the locations z = 0, 85, 175, 350 mm for the case of equal volumetric flow
rates V̇ =115 m3 h−1. The spectra of the Bz-component exhibit generally a broadband
behaviour with similar distinct ranges of power distribution for locations near the
module centre as in the previously discussed cases, namely proportional to ∼f −1 in the
range f � 2 Hz, to f −3 in the range 2 � f � 30 Hz and to less than ∼f −5 in the range
f > 30 Hz. The spectra of the By-component show the characteristic power peak in the
range f ∼ 2–3 Hz and for near centre positions z < 170 mm. However, the power peak
broadens and decreases with growing distance from the centre and disappears in the
spectrum near the boundary of the module, i.e. towards z =350 mm. Simultaneously
the characteristic power ranges become blurred. This behaviour is attributed to the
decrease of the mean magnetic field intensity with increasing distance from the centre
as can be seen in figure 11. A dependence of the characteristic frequency fp of the
power peak on the decreasing intensity of the mean magnetic field, as demonstrated
in figure 21(a, c) cannot be identified in this case. The reason is as yet unclear and
further investigation is needed. It is conjectured that the effect was not captured due
to the lack of data recordings in the range of fast decreasing field intensities.

Dynamic regularities of the magnetic field can also be identified by evaluating cross-
correlation functions (CCF) of the time signals. Cross-correlation functions can serve
as a tool to detect the spatial coherency of time signals recorded at different locations.
Such CCFs have been evaluated from Hall probe signal recordings. Typical sets of
CCFs for time series of By-signals from the Hall probes H3 and H4 are displayed
in figure 23(a–c) for the volumetric flow rate combination V̇ C = V̇ H1,2 = 115 m3 h−1.
Each figure shows five CCF graphs associated with five different positions of the

† The power spikes in the spectrum for higher frequencies f > 30Hz are associated with
experimental noise originating from the general power supply for the test rig by the 50Hz AC grid
and the ≈ 30Hz tyristor controlled power supply for the MHD-pumps.
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Figure 22. Power spectral density (PSD) of the components (a) By , (b) Bz of Hall probe
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X = (0, 0, 87.5 mm), X =(0, 0, 175mm), X =(0, 0, 350mm).

two probes as they are simultaneously traversed along the module axis at a constant
distance of 135 mm from each other. The CCFs are presented for different time
intervals ranging from −400 < τ < 400 s in figure 23(a) to −4 <τ < 4 s in figure 23(c).

The CCFs exhibit two characteristic features: (1) a stationary base caused by
correlated random low-frequency events, (2) a narrowband peak of highly correlated
high-frequency fluctuations. The first feature can be identified in all CCF graphs of
figure 23(a) as a peaky bulge at location τ =0 which is large and positive at the
outermost position of the two probes (H4 at z = 215 mm, H3 at z = 350 mm) and
small and even negative at the innermost position (H4 at z = −135 mm, H3 at z = 0).
The transition from the negative to the positive correlation peak at z = 0 can be
explained by the traversing of the two probes through a By-field with a maximum
near the centre (see figure 11b) and a varying gradient. Accordingly the low-frequency
time signals of the two probes may be in phase or out of phase, resulting in a positive
and negative ‘pointed cap’ peak of the correlation curve. The time scale T of the
low-frequency correlation may be estimated from the intersection of the tangent line
to the cap peak with the abscissa as indicated in figure 23(a) (By3: z = 265.5 mm, By4:
z = 127.5 mm). The estimate is T ≈ 30 s which corresponds to a low-frequency event
of f ≈ 0.03 Hz.

The other feature, the narrowband oscillatory behaviour of the CCF near τ = 0
(which is particularly distinct for Hall probe locations near the centre of the module)
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at positions H3 and H6. Experimental condition: V̇ C = V̇ H1,2 = 115m3 h−1.

is easily seen in figure 23(b, c). The character of the CCFs in the near centre range
reflects the properties of the power density spectra near their power peaks (see
figure 21). The frequency of the power peak is directly related to the oscillatory
period in the CCF (e.g. for By3: z = 0, By4: z = −135 mm one reads from figure 23(c)
the value τ ≈ 0.3 s and correspondingly in figure 21(a) the value f ≈ 2.7 Hz). The
bandwidth of the power peak in figure 21(a) is correlated to the decay time scale of
the corresponding CCF. It is assessed as 	f ≈ 1 Hz for the case V̇ =115 m3 h−1. The
associated decay time scale (indicated in figure 23) is τ ≈ 1–2 s.

In principle the CCFs should also indicate a transit time of wave-like events passing
the spatially separated probes in a more or less regular time sequence. Indeed, for
the measurements near the module centre a small signal transit time of 	τ ≈ 0.1 s
between the positions z = 0 and z = −135 mm may be conjectured. However, so far
the evaluated CCFs have not given unbiased results for a delay time in the whole
range of oscillatory behaviour of the CCF near the centre of the module. A more
precise evaluation of transit times would require new Hall probe measurements with
higher temporal resolution and variable spacing between the traversable sensors.

Cross-correlation measurements between Hall probes at large distance apart, i.e.
between positions H5 or H6 and H3 or H4 have shown only a weak correlation of
less than 10% in a very low-frequency range f < 0.03 Hz. In all evaluated cases no
delay time could be observed. This indicates that the low-frequency events occurred at
both measuring positions simultaneously. A typical CCF for this kind of correlation
measurement is shown in figure 24.

5. Discussion
In order to facilitate the discussion we have evaluated relevant magnetohydro-

dynamic parameters for some characteristic experimental conditions and listed them
in table 1 in the Appendix. Such parameters are the fluid flow Reynolds number Re
and the magnetic Reynolds number Rm, the Hartmann number Ha, the interaction
parameter N , the injected mechanical helicity HV and the mean dissipation rate ε. The
quantities Re, Rm and HV are defined in equations (2.5) and (2.22). The Hartmann
number, the interaction parameter and the dissipation rate are defined here for our
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experimental conditions by the following relationships:

Ha = B̄dh

(
σ

ρv

)1/2

, N =
σB̄2dh

ρū
, ε =

1

M

3∑
i=1

Vi	pi. (5.1)

Here ū is the mean velocity in the helical or central channels, dh their hydraulic
diameter, and B̄ a measured local mean intensity of the magnetic field. For B̄ we shall
use the measured value at the module centre (position H3). The kinetic helicity can
be evaluated, if simplifying assumptions are made for the velocity distributions in the
channels. We assume that a quasi-rigid body rotation prevails in the helical channels
and plug flow in the central channel. The angular velocity of the helical flow and the
helicity of the total channel flow are then evaluated as

Ω ≈ V̇ H cos α

AH r̄
≈ ūH

r̄
cos α, HV =

ū2
H

r̄
sin 2α, (5.2)

where AH is the cross-section of the helical channel, r̄ its mean radius and α accounts
for the helix pitch (α = arctan (h/(2πr̄)); h is the helical pitch). The total specific
dissipation was evaluated using the measured volumetric flow rates V̇ i in the helical
and central channels, the associated measured pressure losses 	pi and the total fluid
mass M contained in the channel systems. Alfvén velocities B̄/

√
uρ based on the

measured magnetic field intensity at location H3 were calculated together with other
parameters for experimental conditions of equal volumetric flow rates in the helical
and central channels, i.e. V̇ H1 = V̇ H2 = V̇ C , and are listed in table 1, together with
data for conditions of constant helical but variable central flow rates. The table shows
that the volumetric flow rates realized correspond to high Reynolds numbers on the
one hand, but result in low magnetic Reynolds numbers on the other. In figure 9
the phase diagram for dynamo action is also displayed as a function of magnetic
Reynolds numbers for the helical and central flow.

Apart from the magnetic Reynolds number, two other magnetohydrodynamic
groups, the Hartmann number Ha and the interaction parameter N , may characterize
the dynamo in the supercritical range. It is seen in the table that the Hartmann number
can achieve a considerable value of up to Ha= 500 at the highest supercritical flow
rates, and it still has values of Ha= 20 at near critical conditions. It is well known
from channel flow that the fluid dynamic velocity profile is subjected to significant
deformation by Lorentz forces at Hartmann numbers of the order Ha=20. This
is certainly the case in the channel system of the dynamo module at supercritical
saturated dynamo states. The significant increase in the pressure drop is an obvious
sign of the deformation of the velocity profile by Lorentz forces and dissipative
Joule losses. Moreover, it is to be expected that turbulent fluctuations in the high-
Reynolds-number channel flow are strongly damped by the dynamo mean magnetic
field according to its intensity distribution in the module. This conjecture is supported
by the size of the interaction parameter N , of order 1 at the higher volumetric flow
rates. As the interaction parameter can be considered a measure of the ratio of the
vortex turn-over time and the Joule dissipation time of a vortex that is the size of
the channel diameter (cf. Alemany et al. 1979), even the largest possible fluctuations
experience significant Joule damping. The dissipative destruction of smaller vortices
is certainly stronger. Thus, a tendency to partial relaminarization of the channel flow
may be expected. This conjecture is substantiated by the saturation behaviour of the
RMS-values at supercritical conditions, as is seen in figure 20.
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Figure 25. Phase diagram for dynamo action in the Karlsruhe dynamo experiment as a
function of the different flow rates. Comparison between experiment and model calculations
of Tilgner (2002). The continuous line corresponds to a magnetic diffusivity λeff = 0.1 m2 s−1

and an aspect ratio D/r0 = 1.2. The dotted line (b) is for λeff = 0.11m2 s−1 and D/r0 = 1. The
lines (a) and (c) show results for D/r0 = 1, different magnetic diffusivities λeff = 0.11m2 s−1 (a),
λeff = 0.115m2 s−1 (c) and a slightly modified velocity profile.

The self-excitation of the dynamo has been defined in § 4.1 according to
experimental criteria. These findings have been confirmed by model calculations
of Tilgner (2002) and Rädler et al. (2002a). Figure 25 shows for comparison the
experimental data and the calculated curves of Tilgner (2002) in the dynamo phase
diagram. In Tilgner’s calculations an effective magnetic diffusivity λeff has been used
which takes into account a correction of molecular magnetic diffusivity λ due to
turbulent motion and a reduced average molecular conductivity due to the stainless
steel piping structures in the module. He also tested the sensitivity of the marginal
states to slight variations of the geometry of the dynamo module (the aspect ratio)
and to variations of the velocity distribution in the vortex generator. The details
are described in the figure caption. The agreement between experiment and model
calculation is adequate. Rädler et al. (2002a) have obtained similar results (see their
figure 15 and their evaluation of the additional turbulent diffusivity).

The overall structure of the observed magnetic field mode, as displayed in
figure 10(a, b), is in good agreement with the predictions of the model theories
of Tilgner (1997, 2002) and Rädler et al. (2002a). Both model theories predict a quasi-
dipolar magnetic field of the mode type m = 1 as realized in the experiment. Indeed,
Tilgner (2002) calculated an isoline graph of the magnetic field, which conforms to the
measured isoline field of figure 10(a). There are, however, discrepancies between the-
oretical predictions and measurements concerning the local structure of the magnetic
field. For equal helical flow rates the theory gives a twisting of the radial magnetic
field vectors by an angle π for positions along the cylinder axis. The experimental
measurements indicate an angle of π/2 only, as is seen from figure 11(b, d). Another
striking observation is the deviation of the measured distribution of the magnetic
field components on the module axis. Although the measurements were taken only
on the semi-axis 0< z < 350 mm, there are qualitative deviations from the symmetries
predicted by theory. This is seen from figure 26 which is a not-to-scale reproduction
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of figure 6 of Rädler et al. (2002a) in which the experimental curves of figure 11(a)
are roughly integrated. The measured field components Bx,exp and By,exp were phase
shifted by an angle β =3/2π to be comparable with the calculated symmetric and anti-
symmetric components. It is as yet unclear what causes this non-symmetric behaviour
of the dynamo magnetic field, which results in the experimental observations.

The weakly nonlinear behaviour of the Karlsruhe dynamo in the supercritical
regime is best characterized as an imperfect bifurcation of the magnetohydrodynamic
state from a pure hydrodynamic state of helical channel flow. Although the kind of
bifurcation has been identified from local field measurements only (see figures 13, 14),
one may presume that the spatially averaged intensity of the magnetic field would
show the same behaviour. The experimental results suggest that the smooth transition
from the non-magnetic to a magnetic state is determined by the initial distribution of
the seed field and, moreover, that this initial condition is subjected to changes that
depend on the intensity and duration of the action of the dynamo magnetic field on
the structural environment of the test module. There is yet another permanent feature
of the magnetic field generated by this test module: the intensity of the magnetic
field component By is stronger at high supercritical conditions, if its orientation is in
the negative y-direction (see figure 13 compared to figure 14). This again indicates
a systematic structural non-symmetry of the test facility and, even more important,
the influence of the environment in the laboratory which contains ferromagnetic
structural material such as steel beams and floors.

Tilgner & Busse (2002) and Rädler et al. (2002b) developed models to describe
dynamo action in the slightly trans-critical regime. They find an imperfect bifurcation
for the transition to dynamo action that depends on the orientation of an initial
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Figure 27. The magnetic field component By at the centre of the test module as a function
of equal helical volumetric flow rates V̇H1,2 for a fixed central flow rate V̇ C =112m3 h−1. The
symbols �, � indicate the experimental results as presented in figure 14. The continuous and
the dashed lines are solutions for this parameter set obtained by Rädler et al. (2002b).
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Figure 28. The magnetic field component By at the centre of the test module as a function
of equal helical volumetric flow rates V̇H1,2 for a fixed central flow rate V̇ C =112m3 h−1. The
symbols �, � indicate the experimental results as presented in figure 13. The continuous and
the dashed lines are solutions of the steady state of model equation (2.7) with Rm replaced by
V̇ H1,2 and V̇ crit = 102m3 h−1, B0 = −0.5 G and c/β = 9 × 103 G2 h m−3 according to Tilgner &
Busse (2002).

seed field and thus confirm the overall observation. There is however a quantitative
difference between the predicted and the measured intensities of the isolated branch.
As a demonstration we compare our results with calculations of Rädler et al. (2002b)
in figure 27. The experimental data correspond to those in figure 14. The calculations
of Rädler et al. are based on a mean field approach.

Tilgner & Busse (2002) arrived at equivalent results using spectral numerical and
low-order analytical methods. Their results are displayed together with the data of
figure 13 in figure 28. Their model equation (2.7) suggests that the saturation of
the magnetic field to a steady state is achieved by a reduction of the amplification
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coefficient [(Rm/Rmc − 1) − (β/Rmc)|B̄|2)] caused by the action of Lorentz forces
which is reflected in the term (β/Rmc)|B̄|2.

In general it can be stated that the theoretical predictions based on independent
mathematical procedures are in good agreement with the observations and
measurements, except for certain structural non-symmetries of the test module that
are not represented and except for some differences between the local measurements
of the field intensity and the calculated mean values for the magnetic field. This is
not surprising, as the calculations are based on a smoothing approximation using
small-scale spatial averaging.

The Gaussian character of the probability distribution of the fluctuations of the
magnetic field components in figure 18 suggests that the turbulent hydromagnetic pro-
cesses may be locally quasi-isotropic. This is corroborated by the vanishing skewness
factor and a flatness factor of 2.5, which is close to the Gaussian value 3. Compared to
the intensity of the mean magnetic field, the intensities of the fluctuations, measured
by the RMS value, are small, of order less than 1% and, moreover, the relative
level seems to decrease for growing mean field intensity (see figure 20). This indicates
enhanced Joule dissipative damping for the small-scale hydromagnetic turbulence.

The power spectra of the magnetic field fluctuations, displayed in figures 21 exhibit
the following general features: The power level increases in the whole spectral range
with increasing intensity of the local mean magnetic field. For active dynamo states of
more than about 50 G the PSD functions of the By-components show a pronounced
broad peak whose centre frequency fp , as introduced in § 4.4, increases with the
increasing intensity of the local mean magnetic field. It varies for our experimental
conditions roughly in the range 1<f < 3 Hz (see figure 21a). The other two field
components do not show a similarly distinct power peak. However, the Bz-component
indicates a cut-off frequency in the range 1 < f < 3 Hz which separates a range of
quasi-constant power spectra from the range of decaying power spectra.

The functional character of the power spectra may be discussed in the light of
spectral models for magnetohydrodynamic turbulence and dynamo theory, as outlined
in § 2.4. The discussion is based on the premise that Taylor’s hypothesis holds and
the measured frequencies can be directly correlated to wavenumbers (see § 2.4).

We may roughly distinguish three characteristic functional ranges in the power
spectra of the By-component for strong dynamo action: the low-frequency range
f <fp with a PSD ∼ f −1 behaviour the range f >fp with a PSD ∼ f −3 dependence;
and a high-frequency range f � 20 Hz with PSD ∼ f −5. There seems to be a constant
saturation level for frequencies f < 0.1 Hz for the most intensive dynamo states (see
figure 21a). The suggested functional relationships for the different ranges are based
on relevant spectral models for MHD turbulence in the literature.

The PSD ∼ f −1 relationship in the low-frequency range seems to support the
theoretical findings of Pouquet et al. (1976), who discovered a reverse energy cascade
for a dynamo driven by an injection of helicity into the system at a particular
frequency fin which is beyond the reverse cascade range. We have evaluated this
injection frequency for the helicity (see tables 1 and 2) and find that it is practically
constant for all our experimental conditions. Furthermore, it is larger by more than
a factor 2 than the power peak frequencies fp .

We note here that Marie et al. (2001) and Peffley, Cawthorne & Lathrop (2000)
also observed a frequency range PSD ∼ f −1 in their power spectra obtained from
their experiments with swirling flows in closed containers and imposed external
magnetic fields. However, these authors do not observe power peaks in their spectra.
We thus conjecture that the presence of such peaks in our spectra is associated
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with dynamo action in our experiments. Moreover, whether all these independent
experimental observations can be explained by the Pouquet et al. (1976) theory is
not obvious and needs further elaboration.

The spectral decay of the field intensity in the frequency range f > fp may be attri-
buted to a non-dissipative cascading process of energy towards higher wavenumbers
by local or non-local Alfvén wave interaction with a weak or strong correlation
between the velocity and the magnetic field (see Grappin et al. 1983). This mechanism
results in decay functions PSD ∼ f −m, with 3/2< m < 3 as outlined in § 2.4 (see
equation (2.13) and (2.14)). The character of the power spectra in figure 21(a) seems
to support this model in the relevant range fp < f < fKλ < 15 Hz with fKλ as the
Kolmogorov frequency (see also table 1).

For the high-frequency range the high Hartmann numbers as well as the size of
the interaction parameter N , of order O(1) for intensive dynamo action, suggest that
the decay is predominantly governed by Joule dissipation in the stagnant fluid zones
and in the bulk flow by current short circuits in the free eddies of the turbulent
flow. The Kolmogorov Joule dissipation time scale defined in equation (2.9) in § 2.4
gives the threshhold frequency fK beyond which Joule dissipation would dominate
the spectral distribution. This is evaluated in table 1 in the Appendix. It varies
roughly between 10 and 15 Hz in experiments of significant dynamo action†. Thus,
following Moffatt (1961) the spectral decay of the magnetic field fluctuations should
vary in the frequency range f > fKλ between PSD ∼ f −11/3 and PSD ∼ f −5 depending
on the spectral energy distribution of the turbulent velocity fields which may be of
the order EV

f ∼ f −5/3 or ∼f −3 (see equations (2.12) and (2.15)). The experimental
observation according to figure 21(a–c) is that there is certainly a steeper decrease
of power in the spectra for frequencies f > 20 Hz which may be described by rates
−5 < m < −11/3 depending on the intensity of the mean magnetic field. Thus, the
observed dissipative decay of the experimental spectra seems to be compatible with
the picture of dissipative MHD turbulence in the frequency range f >fKλ.

It may be conjectured that the location of the peaks in the power spectra of
intensive dynamo action may correlate with the injection frequency of kinetic helicity
into the dynamo module. This injection frequency fin is roughly defined by relationship
(5.2). However, the evaluation of these frequencies for the typical experiments listed
in table 1 gives values between 4.2 < fin < 4.7 Hz and 5.3 <f < 5.9 Hz respectively.
This is a frequency range which is about twice as high as the observed location
range of the power peaks between 0.7 <f < 3 Hz (cf. figure 21a, c). Moreover, the
experimental range of injection frequencies is considerably smaller, as its variation
depends essentially on the experimentally realized volumetric flow rates. There is no
obvious correlation between the two frequencies fp and fin. Thus, a scaling of the
power peak frequency fp with the kinetic helicity injection frequency seems to be
inadequate. A more suitable time scale for the frequency fp seems to be the transit
time of an Alfvén wave along the ‘structural wavelengths’ of the module, which is
L =2a. The corresponding frequency scale is fA ≈ Va/2a. In table 1 in the Appendix
these frequencies are evaluated for relevant cases. The frequencies of the power peaks
in the spectra agree fairly well with the reciprocal transit times of the Alfvén waves
along the characteristic structural length scale L = 2a, i.e. two diameters of a vortex
generator. Therefore, we suggest that the power peaks in the power density spectra

† The corresponding Kolmogorov length scale has also been evaluated for the considered cases. It
varies in the range 0.08–0.105 m and is thus of the order of the hydraulic diameters of the channels
of the vortex generators (see table 1).
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reflect a resonant interaction of Alfvén waves with the smallest possible wavelength
associated with the smallest structural length scale a of the module. This conjecture
is supported by the cross-correlation measurements (see figures 23 and 24) which
show that the high-frequency signals are strongly correlated at short distances of two
Hall probes, but are uncorrelated at distances of the module’s dimension. Moreover,
the correlation function for the high-frequency signals indicate a delay time, while
the low-frequency correlations for large distances of the probes do not. This is not
surprising in the light of the theory or Alfvén waves, since even for the most intensive
dynamo actions in our experiments Alfvén waves are dampened in liquid sodium
on length scales of about 0.1 m. It may thus be questioned whether the oscillatory
features of the magnetic field should be associated with the phenomena of linear
Alfvén wave propagation (cf. Davidson 2001), as these waves are strongly damped in
liquid sodium. However, at super-critical conditions there is the possibility of nonlinear
interactions of damped waves, which may lead to sustained finite-amplitude waves.
In this context Grappin et al. (1983) speak of ‘Alfvénic fluctuations’ and ‘Alfvénic
turbulence’.

6. Conclusions and perspectives
The Karlsruhe dynamo experiment has demonstrated that a permanent magnetic

field of considerable intensity can be generated spontaneously by a regular arrange-
ment of stationary vortices in a conducting fluid. The saturation of the magnetic field
is achieved by the feedback of the magnetic field onto the velocity distribution as
suggested by the dynamo model of Tilgner & Busse (2002) as well as that of Rädler
et al. (2002b). The experimental findings concerning the linear and weakly nonlinear
behaviour of the dynamo agree on the whole with the model predictions. The other
characteristic property of the dynamo magnetic field is the turbulent fluctuations of
the field about its mean value. The statistical properties of these fluctuations fit the
scope of predictions from MHD turbulence models available in the literature.

Although one may conjecture that these fluctuations of the magnetic field correlate
with the velocity fluctuations of the turbulent channel flow, direct measurements were
not performed, as velocity measurements, in particular velocity fluctuation measure-
ments, in liquid metal flow are difficult and tedious. Further experiments with adequate
instrumentation for velocity measurements should corroborate our conjectures for
the velocity spectra and also confirm the feedback of the dynamo magnetic field onto
the mean velocity and the velocity fluctuations.
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Rädler from the Astrophysikalisches Institut Potsdam, M. Stix from the Kiepenheuer
Institut für Sonnenphysik in Freiburg deserve our special thanks for their positive
valuation of the experimental program and their constructive comments during the
early phase of the research project.
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Appendix
The table in this appendix lists magnetohydrodynamic parameters for some

characteristic experimental conditions. The data are arranged as follows. They are
ordered by the central and helical flow rates V̇ C and V̇ H and the associated mean
velocities ūC and ūH in the first two columns. There are two sets of data, one for
equal central and helical flow rates, the other for non-equal ones. The data associated
with each pair of flow rates are arranged in double lines where the first two lines list
the related symbols or definitions. Other relevant definitions are given below:

Pm = ν/λ ≈ 6 × 103; dhC = a/2; AC = π/4(DL)2 = 0.78 × 10−2 [m2];

dhH =
h

2
(
h/a + 1

4

) ≈ 2
5
h; AH = ah/4; Ω = (ūH /r̄) cos α;

α = arctan(h/2πr̄); VD = λ/(2a) = 0.25 [m s−1];

Ha = dhB(σ/ρv)1/2; N = σ |B|2dh/(ρũC,H ).
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Z. Naturforschung 21, 368–376.

Stieglitz, R. & Müller, U. 1996 GEODYNAMO: Eine Versuchsanlage zum Nachweis des
homogenen Dynamoeffekts; Wissenschaftlicher Bericht FZKA 5716.

Stieglitz, R. & Müller, U. 2001 Experimental demonstration of the homogeneous two-scale
dynamo. Phys. Fluids 13, 561–564.

Sumita, I. & Olson, P. 2000 Laboratory experiments on high Rayleigh number thermal convection
in a rapidly rotating hemispherical shell. Phys. Earth Planet. Inter. 117, 153–170.

Tilgner, A. 1997 A kinematic dynamo with a small scale velocity field. Phys. Lett. A 226, 75–79.

Tilgner, A. 2002 Numerical simulation of the onset of dynamo action in an experimental two-scale
dynamo. Phys. Fluids 14, 4092–4094.

Tilgner, A. & Busse, F. H. 2002 Simulation of the bifurcation diagram of the Karlsruhe dynamo.
Magnetohydrodynamics 38, 35–40.

Zhang, K. 1992 Spiralling columnar convection in rapidly rotating spherical shells. J. Fluid Mech.
236, 535–556.


